Large Assemblies

The term “large assembly” means different things to different people, so how do we define a large assembly? Large assemblies are not defined by the number of component or physical properties, rather they have two primary characteristics. An assembly is considered large if:

• It uses all your system resources
• It hurts productivity

These characteristics can be further divided and be caused by many of the following traits:

Physically large

• Requires some sort of layout or other engineering input to properly position all the components.
• Has so many components that their management, calculation, and memory requirements are large
• enough to be a detriment to productivity


• Has many parametric relationships
• Has a large number of mates.
• Taxes your computer resources.
• Contains a large number of different components that need to be managed and can slow down the
• processing speed of even large, fast computers.
• Has imported data that has to be located and loaded.
• Has geometric complexity that is difficult to rebuild

– Requires best practices for large assembly design not only at the assembly level but also the part and drawing stage of work.

Uses multiple systems or disciplines. These could include:

• Mechanical components
• Custom components
• Toolbox parts
• Library parts
• Weldments
• Routed systems
• Components from outside vendors and subcontractors
• Customer files

The truth is not bigger and better hardware can fasten assembly performance but the slow performance is a combination on many factors in design.

Slower performance can be seen in following areas:

  • Opening, Closing & Saving time
  • Rebuild time
  • Creating drawing
  • Rotating, paning & viewing
  • Inserting components
  • Switching between parts, assembly, drawings
  • Mating, etc…

Major performance issue arise from modeling practices than any software or hardware issues.

  • Things under solidworks control is 20%, they are bugs, algorithms, code efficiency.
  • Things under user control is 80% as,

  • Software and data management option and setup, fail to plan things in most efficient way affects performance.
  • It’s good to buy solidworks certified hardware or equivalent for maximize performance.
  • Best modeling practice needs to adapt to guide your work by avoiding lengthy modeling processes.
  • Slower performing assemblies are accumulation of many small fixes there is no easy fix for such assemblies. Fact is when solidworks models starts running slow user wants to jump to bigger and faster computer which is waste of money for keeping nonprofessional drivers on board. With proper strategy of design root cause can be controlled to low problematic end irrespect to how good your computer may be (I am not against powerful Pc’s but against wrong practices).

    Using Format